PUBLICATIONS

HOME | PUBLICATIONS

PAPERS

/ 原著論文

  1. Pathogenicity of enterotoxigenic Escherichia coli in Caenorhabditis elegans as an alternative model host.
    Matsuda A, Ishida T, Tanimoto Y, Wada T, Kage-Nakadai E. Biosci Biotechnol Biochem. 2023 Dec 30:zbad185. doi: 10.1093/bbb/zbad185. Online ahead of print.
  2. Improvement of Locomotion Caused by Lactococcus lactis subsp. lactis in the Model Organism Caenorhabditis elegans.
    Ali MS, Ahmed S, Takeuchi S, Wada T, Kage-Nakadai E. Nutrients. 2023 Oct 23;15(20):4482. doi: 10.3390/nu15204482.
  3. Impacts of Bacillus subtilis var. natto on the lifespan and stress resistance of Caenorhabditis elegans.
    Teramoto N, Sato K, Wada T, Nishikawa Y, Kage-Nakadai E. J Appl Microbiol. 2023 Apr 3;134(4):lxad082. doi: 10.1093/jambio/lxad082.
  4. Determinants of Subtype-Selectivity of the Anthelmintic Paraherquamide A on Caenorhabditis elegans Nicotinic Acetylcholine Receptors.
    Koizumi W, Otsubo S, Furutani S, Niki K, Takayama K, Fujimura S, Maekawa T, Koyari R, Ihara M, Kai K, Hayashi H, Ali MS, Kage-Nakadai E, Sattelle DB, Matsuda K.Mol Pharmacol. 2023 Jun;103(6):299-310. doi: 10.1124/molpharm.122.000601. Epub 2023 Mar 22.
  5. Avoidance behavior and experience-dependent tolerance in response to bitter compounds in Caenorhabditis elegans.
    Ishikawa S, Iida C, Takezawa Y, Chiba K, Kage-Nakadai E. Biosci Biotechnol Biochem. 2023 Feb 24;87(3):314-319. doi: 10.1093/bbb/zbac200.
  6. High-performance optical control of GPCR signaling by bistable animal opsins MosOpn3 and LamPP in a molecular property-dependent manner.
    Koyanagi M, Shen B, Nagata T, Sun L, Wada S, Kamimura S, Kage-Nakadai E, Terakita A. Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2204341119. doi: 10.1073/pnas.2204341119. Epub 2022 Nov 23.
  7. Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples.
    Oshimi K, Nishimura Y, Matsubara T, Tanaka M, Shikoh E, Zhao L, Zou Y, Komatsu N, Ikado Y, Takezawa Y, Kage-Nakadai E, Izutsu Y, Yoshizato K, Morita S, Tokunaga M, Yukawa H, Baba Y, Teki Y, Fujiwara M. Lab Chip. 2022 Jun 28;22(13):2519-2530. doi: 10.1039/d2lc00112h.
  8. The defense response of Caenorhabditis elegans to Cutibacterium acnes SK137 via the TIR-1-p38 MAPK signaling pathway.
    Tsuru A, Hamazaki Y, Tomida S, Ali MS, Kage-Nakadai E.
    Biosci Biotechnol Biochem. 2021 Dec 17:zbab218.
    doi: 10.1093/bbb/zbab218. Online ahead of print.
  9. Seroepidemiological survey on pigs and cattle for novel K88 (F4)-like colonization factor detected in human enterotoxigenic Escherichia coli
    Yoshihiko Tanimoto, Miyoko Inoue, Kana Komatsu, Atsuyuki Odani, Takayuki Wada, Eriko Kage-Nakadai, Yoshikazu Nishikawa Epidemiology & Infection 2021, DOI: 10.1017/S0950268821002697
  10. Nonpathogenic Cutibacterium acnes Confers Host Resistance against Staphylococcus aureus
    Ayano Tsuru, Yumi Hamazaki, Shuta Tomida, Mohammad Shaokat Ali, Tomomi Komura, Yoshikazu Nishikawa, Eriko Kage-Nakadai
    Microbiology Spectrum 2021 9(2):e00562-21 doi:10.1128/Spectrum.00562-21
  11. Bacillus subtilis var. natto increases the resistance of Caenorhabditis elegans to gram-positive bacteria.
    Katayama R, Matsumoto Y, Higashi Y, Sun S, Sasao H, Tanimoto Y, Nishikawa Y, Kage-Nakadai E.
    J Appl Microbiol. 2021 Jun 22. doi: 10.1111/jam.15156
  12. Metolazone upregulates mitochondrial chaperones and extends lifespan in Caenorhabditis elegans.
    Ito A, Zhao Q, Tanaka Y, Yasui M, Katayama R, Sun S, Tanimoto Y, Nishikawa Y, Kage-Nakadai E. 
    Biogerontology. 2021 Feb;22(1):119-131. doi: 10.1007/s10522-020-09907-6. Epub 2020 Nov 20.
  13. Impacts of Endocrine Disruptor di-n-Butyl Phthalate Ester on Microalga Chlorella vulgaris Verified by Approaches of Proteomics and Gene Ontology.
    Liao CS, Hong YH, Nishikawa Y, Kage-Nakadai E, Chiou TY, Wu CC. 
    Molecules. 2020 Sep 19;25(18):4304. doi: 10.3390/molecules25184304.
  14. Real-time nanodiamond thermometry probing in vivo thermogenic responses.
    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E. 
    Sci Adv. 2020 Sep 11;6(37):eaba9636. doi: 10.1126/sciadv.aba9636. Print 2020 Sep.
  15. Prevalence of Virulence Genes of Diarrheagenic Escherichia coli in Fecal Samples Obtained from Cattle, Poultry and Diarrheic Patients in Bangladesh.
    Parvej MS, Alam MA, Shono M, Zahan MN, Masuma Parvez MM, Ansari WK, Jowel MS, Uddin MS, Kage-Nakadai E, Rahman MT, Nishikawa Y. 
    Jpn J Infect Dis. 2020 Jan 23;73(1):76-82. doi: 10.7883/yoken.JJID.2019.016. Epub 2019 Aug 30.
  16. Toll-like receptor homolog TOL-1 regulates Bifidobacterium infantis-elicited longevity and behavior in Caenorhabditis elegans.
    Sun S, Mizuno Y, Komura T, Nishikawa Y, Kage-Nakadai E. 
    Biosci Microbiota Food Health. 2019;38(3):105-110. doi: 10.12938/bmfh.18-031. Epub 2019 May 23.
  17. daf-16/FOXO isoform b in AIY neurons is involved in low preference for Bifidobacterium infantis in Caenorhabditis elegans.
    Sun S, Ohta A, Kuhara A, Nishikawa Y, Kage-Nakadai E. 
    Neurosci Res. 2020 Jan;150:8-16. doi: 10.1016/j.neures.2019.01.011. Epub 2019 Feb 4.
  18. Host Range-Associated Clustering Based on Multilocus Variable-Number Tandem-Repeat Analysis, Phylotypes, and Virulence Genes of Atypical Enteropathogenic Escherichia coli Strains.
    Parvej MS, Nakamura H, Alam MA, Wang L, Zhang S, Emura K, Kage-Nakadai E, Wada T, Hara-Kudo Y, Nishikawa Y. 
    Appl Environ Microbiol. 2019 Mar 6;85(6):e02796-18. doi: 10.1128/AEM.02796-18. Print 2019 Mar 15.
  19. Clostridium butyricum MIYAIRI 588 Increases the Lifespan and Multiple-Stress Resistance of Caenorhabditis elegans.
    Kato M, Hamazaki Y, Sun S, Nishikawa Y, Kage-Nakadai E. 
    Nutrients. 2018 Dec 5;10(12):1921. doi: 10.3390/nu10121921.
  20. Diffusely Adherent Escherichia coli Strains Isolated from Healthy Carriers Suppress Cytokine Secretions of Epithelial Cells Stimulated by Inflammatory Substances.
    Tanimoto Y, Tamai S, Matsuzaki T, Takeuchi N, Noju T, Yanagida S, Kage-Nakadai E, Yamaguchi Y, Kodama T, Nakamura S, Motooka D, Iida T, Nishikawa Y
    Infect Immun. 2018 Dec 19;87(1):e00683-18. doi: 10.1128/IAI.00683-18. Print 2019 Jan.
  21. Imbalanced Expression of Tau and Tubulin Induces Neuronal Dysfunction in C. elegans Models of Tauopathy.
    Miyasaka T, Shinzaki Y, Yoshimura S, Yoshina S, Kage-Nakadai E, Mitani S, Ihara Y. 
    Front Neurosci. 2018 Jun 20;12:415. doi: 10.3389/fnins.2018.00415. eCollection 2018.
  22. The small GTPase ARF-1.2 is a regulator of unicellular tube formation in Caenorhabditis elegans.
    Kage-Nakadai E, Sun S, Iwata S, Yoshina S, Nishikawa Y, Mitani S. 
    J Physiol Sci. 2019 Jan;69(1):47-56. doi: 10.1007/s12576-018-0617-5. Epub 2018 Apr 27.
  23. Influence of lactic acid and post-treatment recovery time on the heat resistance of Listeria monocytogenes.
    Omori Y, Miake K, Nakamura H, Kage-Nakadai E, Nishikawa Y. 
    Int J Food Microbiol. 2017 Sep 18;257:10-18. doi: 10.1016/j.ijfoodmicro.2017.06.008. Epub 2017 Jun 12.
  24. Prevalence of Diarrheagenic Escherichia coli in Foods and Fecal Specimens Obtained from Cattle, Pigs, Chickens, Asymptomatic Carriers, and Patients in Osaka and Hyogo, Japan.
    Wang L, Zhang S, Zheng D, Fujihara S, Wakabayashi A, Okahata K, Suzuki M, Saeki A, Nakamura H, Hara-Kudo Y, Kage-Nakadai E, Nishikawa Y. 
    Jpn J Infect Dis. 2017 Jul 24;70(4):464-469. doi: 10.7883/yoken.JJID.2016.486. Epub 2017 Mar 28.
  25. Prevalence, antimicrobial resistance and multiple-locus variable-number tandem-repeat analysis profiles of diarrheagenic Escherichia coli isolated from different retail foods.
    Wang L, Nakamura H, Kage-Nakadai E, Hara-Kudo Y, Nishikawa Y. 
    Int J Food Microbiol. 2017 May 16;249:44-52. doi: 10.1016/j.ijfoodmicro.2017.03.003. Epub 2017 Mar 7.
  26. Sesamin extends lifespan through pathways related to dietary restriction in Caenorhabditis elegans.
    Nakatani Y, Yaguchi Y, Komura T, Nakadai M, Terao K, Kage-Nakadai E, Nishikawa Y. 
    Eur J Nutr. 2018 Apr;57(3):1137-1146. doi: 10.1007/s00394-017-1396-0. Epub 2017 Feb 26.
  27. Distinct roles of the two VPS33 proteins in the endolysosomal system in Caenorhabditis elegans.
    Gengyo-Ando K, Kage-Nakadai E, Yoshina S, Otori M, Kagawa-Nagamura Y, Nakai J, Mitani S. 
    Traffic. 2016 Nov;17(11):1197-1213. doi: 10.1111/tra.12430. Epub 2016 Oct 3.
  28. Comparison by multilocus variable-number tandem repeat analysis and antimicrobial resistance among atypical enteropathogenic Escherichia coli strains isolated from food samples and human and animal faecal specimens.
    Wang L, Nakamura H, Kage-Nakadai E, Hara-Kudo Y, Nishikawa Y. 
    J Appl Microbiol. 2017 Jan;122(1):268-278. doi: 10.1111/jam.13322. Epub 2016 Nov 21.
  29. Caenorhabditis elegans homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance.
    Kage-Nakadai E, Ohta A, Ujisawa T, Sun S, Nishikawa Y, Kuhara A, Mitani S. 
    Genes Cells. 2016 Sep;21(9):936-48. doi: 10.1111/gtc.12394. Epub 2016 Jul 12.
  30. Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans.
    Imae R, Dejima K, Kage-Nakadai E, Arai H, Mitani S. 
    Sci Rep. 2016 Jun 16;6:28198. doi: 10.1038/srep28198.
  31. Curcumin improves tau-induced neuronal dysfunction of nematodes.
    Miyasaka T, Xie C, Yoshimura S, Shinzaki Y, Yoshina S, Kage-Nakadai E, Mitani S, Ihara Y. 
    Neurobiol Aging. 2016 Mar;39:69-81. doi: 10.1016/j.neurobiolaging.2015.11.004. Epub 2015 Dec 1.
  32. Locus-specific integration of extrachromosomal transgenes in C. elegans with the CRISPR/Cas9 system.
    Yoshina S, Suehiro Y, Kage-Nakadai E, Mitani S. 
    Biochem Biophys Rep. 2015 Dec 1;5:70-76. doi: 10.1016/j.bbrep.2015.11.017. eCollection 2016 Mar.
  33. Characterization of unstable pEntYN10 from enterotoxigenic Escherichia coli (ETEC) O169:H41.
    Ban E, Yoshida Y, Wakushima M, Wajima T, Hamabata T, Ichikawa N, Abe H, Horiguchi Y, Hara-Kudo Y, Kage-Nakadai E, Yamamoto T, Wada T, Nishikawa Y. 
    Virulence. 2015;6(8):735-44. doi: 10.1080/21505594.2015.1094606.
  34. The Tumor Suppressor BCL7B Functions in the Wnt Signaling Pathway.
    Uehara T, Kage-Nakadai E, Yoshina S, Imae R, Mitani S. 
    PLoS Genet. 2015 Jan 8;11(1):e1004921. doi: 10.1371/journal.pgen.1004921. eCollection 2015 Jan.
  35. A conditional knockout toolkit for Caenorhabditis elegans based on the Cre/loxP recombination.
    Kage-Nakadai E, Imae R, Suehiro Y, Yoshina S, Hori S, Mitani S. 
    PLoS One. 2014 Dec 4;9(12):e114680. doi: 10.1371/journal.pone.0114680. eCollection 2014.
  36. Methods for single/low-copy integration by ultraviolet and trimethylpsoralen treatment in Caenorhabditis elegans.
    Kage-Nakadai E, Imae R, Yoshina S, Mitani S. 
    Methods. 2014 Aug 1;68(3):397-402. doi: 10.1016/j.ymeth.2014.02.036. Epub 2014 Mar 12.
  37. The homologous carboxyl-terminal domains of microtubule-associated protein 2 and TAU induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles.
    Xie C, Miyasaka T, Yoshimura S, Hatsuta H, Yoshina S, Kage-Nakadai E, Mitani S, Murayama S, Ihara Y. 
    PLoS One. 2014 Feb 25;9(2):e89796. doi: 10.1371/journal.pone.0089796. eCollection 2014.
  38. Influence of oral supplementation with sesamin on longevity of Caenorhabditis elegans and the host defense.
    Yaguchi Y, Komura T, Kashima N, Tamura M, Kage-Nakadai E, Saeki S, Terao K, Nishikawa Y. 
    Eur J Nutr. 2014 Dec;53(8):1659-68. doi: 10.1007/s00394-014-0671-6. Epub 2014 Feb 19.
  39. Mitochondria-type GPAT is required for mitochondrial fusion.
    Ohba Y, Sakuragi T, Kage-Nakadai E, Tomioka NH, Kono N, Imae R, Inoue A, Aoki J, Ishihara N, Inoue T, Mitani S, Arai H. 
    EMBO J. 2013 May 2;32(9):1265-79. doi: 10.1038/emboj.2013.77. Epub 2013 Apr 9.
  40. large-scale screening for targeted knockouts in the Caenorhabditis elegans genome.
    C. elegans Deletion Mutant Consortium. 
    G3 (Bethesda). 2012 Nov;2(11):1415-25. doi: 10.1534/g3.112.003830. Epub 2012 Nov 1.
  41. NRFL-1, the C. elegans NHERF orthologue, interacts with amino acid transporter 6 (AAT-6) for age-dependent maintenance of AAT-6 on the membrane.
    Hagiwara K, Nagamori S, Umemura YM, Ohgaki R, Tanaka H, Murata D, Nakagomi S, Nomura KH, Kage-Nakadai E, Mitani S, Nomura K, Kanai Y. 
    PLoS One. 2012;7(8):e43050. doi: 10.1371/journal.pone.0043050. Epub 2012 Aug 15.
  42. Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans.
    Lee HC, Kubo T, Kono N, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Inoue T, Arai H. 
    Genes Cells. 2012 Sep;17(9):748-57. doi: 10.1111/j.1365-2443.2012.01624.x. Epub 2012 Aug 1.
  43. C. elegans secreted lipid-binding protein NRF-5 mediates PS appearance on phagocytes for cell corpse engulfment.
    Zhang Y, Wang H, Kage-Nakadai E, Mitani S, Wang X. 
    Curr Biol. 2012 Jul 24;22(14):1276-84. doi: 10.1016/j.cub.2012.06.004. Epub 2012 Jun 21.
  44. Reduced expression of BTBD10, an Akt activator, leads to motor neuron death.
    Nawa M, Kage-Nakadai E, Aiso S, Okamoto K, Mitani S, Matsuoka M. 
    Cell Death Differ. 2012 Aug;19(8):1398-407. doi: 10.1038/cdd.2012.19. Epub 2012 Mar 2.
  45. GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans.
    Murata D, Nomura KH, Dejima K, Mizuguchi S, Kawasaki N, Matsuishi-Nakajima Y, Ito S, Gengyo-Ando K, Kage-Nakadai E, Mitani S, Nomura K. 
    Mol Biol Cell. 2012 Mar;23(6):982-95. doi: 10.1091/mbc.E10-10-0855. Epub 2012 Feb 1.
  46. Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method.
    Kage-Nakadai E, Kobuna H, Funatsu O, Otori M, Gengyo-Ando K, Yoshina S, Hori S, Mitani S. 
    BMC Biotechnol. 2012 Jan 5;12:1. doi: 10.1186/1472-6750-12-1.
  47. H /myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmoprotective response in Caenorhabditis elegans.
    Kage-Nakadai E, Uehara T, Mitani S. 
    Biochem Biophys Res Commun. 2011 Jul 8;410(3):471-7. doi: 10.1016/j.bbrc.2011.06.001. Epub 2011 Jun 7.
  48. Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division.
    Nomura KH, Murata D, Hayashi Y, Dejima K, Mizuguchi S, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Hirabayashi Y, Ito M, Nomura K. 
    Glycobiology. 2011 Jun;21(6):834-48. doi: 10.1093/glycob/cwr019. Epub 2011 Feb 16.
  49. Intracellular phospholipase A1 and acyltransferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol.
    Imae R, Inoue T, Kimura M, Kanamori T, Tomioka NH, Kage-Nakadai E, Mitani S, Arai H. 
    Mol Biol Cell. 2010 Sep 15;21(18):3114-24. doi: 10.1091/mbc.E10-03-0195. Epub 2010 Jul 28.
  50. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor.
    Wang X, Li W, Zhao D, Liu B, Shi Y, Chen B, Yang H, Guo P, Geng X, Shang Z, Peden E, Kage-Nakadai E, Mitani S, Xue D. 
    Nat Cell Biol. 2010 Jul;12(7):655-64. doi: 10.1038/ncb2068. Epub 2010 Jun 6.
  51. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease.
    Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D. 
    Science. 2010 Apr 16;328(5976):327-34. doi: 10.1126/science.1182374. Epub 2010 Mar 11.
  52. Magnesium excretion in C. elegans requires the activity of the GTL-2 TRPM channel.
    Teramoto T, Sternick LA, Kage-Nakadai E, Sajjadi S, Siembida J, Mitani S, Iwasaki K, Lambie EJ. 
    PLoS One. 2010 Mar 8;5(3):e9589. doi: 10.1371/journal.pone.0009589.
  53. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.
    Kage-Nakadai E, Kobuna H, Kimura M, Gengyo-Ando K, Inoue T, Arai H, Mitani S. 
    PLoS One. 2010 Jan 25;5(1):e8857. doi: 10.1371/journal.pone.0008857.
  54. The roles and acting mechanism of Caenorhabditis elegans DNase II genes in apoptotic dna degradation and development.
    Lai HJ, Lo SJ, Kage-Nakadai E, Mitani S, Xue D. 
    PLoS One. 2009 Oct 7;4(10):e7348. doi: 10.1371/journal.pone.0007348.
  55. Caenorhabditis elegans caspase homolog CSP-2 inhibits CED-3 autoactivation and apoptosis in germ cells.
    Geng X, Zhou QH, Kage-Nakadai E, Shi Y, Yan N, Mitani S, Xue D. 
    Cell Death Differ. 2009 Oct;16(10):1385-94. doi: 10.1038/cdd.2009.88. Epub 2009 Jul 3.
  56. A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans.
    Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, Iino Y, Kubo T. 
    Nat Neurosci. 2009 Aug;12(8):981-7. doi: 10.1038/nn.2347. Epub 2009 Jun 28.
  57. Insights into social insects from the genome of the honeybee Apis mellifera.
    Honeybee Genome Sequencing Consortium. 
    Nature. 2006 Oct 26;443(7114):931-49. doi: 10.1038/nature05260.
  58. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome.
    Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament SA, Toth AL, Ohashi K, Takeuchi H, Kamikouchi A, Kage E, Morioka M, Beye M, Kubo T, Robinson GE, Maleszka R. 
    Insect Mol Biol. 2006 Oct;15(5):563-76. doi: 10.1111/j.1365-2583.2006.00677.x.
  59. MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans.
    Kage E, Hayashi Y, Takeuchi H, Hirotsu T, Kunitomo H, Inoue T, Arai H, Iino Y, Kubo T. 
    Curr Biol. 2005 Sep 6;15(17):1554-9. doi: 10.1016/j.cub.2005.07.057.
  60. Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain.
    Takeuchi H, Kage E, Sawata M, Kamikouchi A, Ohashi K, Ohara M, Fujiyuki T, Kunieda T, Sekimizu K, Natori S, Kubo T. 
    Insect Mol Biol. 2001 Oct;10(5):487-94. doi: 10.1046/j.0962-1075.2001.00288.x.